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General Case

Ordinary Differential Equation

dx = b(x)dt (1)

We can solve this differential equation to understand how our system
evolves in time. But what if we added randomness to our system:

Stochastic Differential Equation

dx = b(x)dt + o(x)dw (2)
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We have two compact, connected sets A, B C R” and we want to consider
the paths in our evolution that start in A and end up in B.

Figure: E & Vanden-Eignden(2006, 2010) [1] [2]

We call these reactive trajectories.
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Committor functions

Forward Committor

We define the forward committor g™ (x) as:

Ta(x) = min{t > 0 : x(0
78(x) = min{t > 0: x(0
q" (x) = Pxlra(x) < 7a(x)]
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Control Theory

In a dynamic system where there is some function v that "we" can
control. Our goal is to pick v(-) to maximize the pay off function P[v(-)]

=
height = h(t)
( rocket engines
e o
moon’s surface
A ROCKET CAR ON A TRAIN TRACK
(a) landing a rocket (b) centering a rocket

Figure: Evans(1980) [3]
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Adding a controller

Let's return to our setting at the beginning of the presentation:

Stochastic Differential Equation

dx = b(x)dt + o(x)dw
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Adding a controller

Let's return to our setting at the beginning of the presentation:

Stochastic Differential Equation

dx = b(x)dt + o(x)dw

We want to introduce a control function v : R” — R and we have the
equation:

Controlled Stochastic Differential Equation

dx = (b(x) + v(x))dt + odw

October 8th 2022
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Gao's Optimal Controller

Gao et al Theorem 3.3[4]: If we have the controlled SDE
dx = (—=V U + v(x))dt + v/2edw, we have the optimal control v* = %
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Gao's Optimal Controller

Gao et al Theorem 3.3[4]: If we have the controlled SDE
dx = (—=V U + v(x))dt + v/2edw, we have the optimal control v* = %

But remember our original SDE:

Controlled SDE

dx = (b(x) + v(x))dt + odw
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Gao's Optimal Controller

Gao et al Theorem 3.3[4]: If we have the controlled SDE
dx = (—=V U + v(x))dt + v/2edw, we have the optimal control v* = %

But remember our original SDE:

Controlled SDE

dx = (b(x) + v(x))dt + odw

How can we apply Gao’s argument to this general case?
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General Case

Maybe we can't apply Gao's Argument to the full general case, but we can
definitely do it for general drift b and invertible o

Controlled SDE

dx = (b(x) + v(x))dt + odw

To solve it for the general case, we need to solve the Hamilton Jacobi
Bellman equation.
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Hamilton Jacobi Bellman Equation

We introduce the controlled SDE, with control v(x):
dX(s) = f(X(s), v(Xs))dt + o(Xs)dW(s) (t <s<T)
X(t) =x

We have the expected payoff function:

Peelv()] = E[f, r ,v(Xs))ds + g(X (T)))]

The value function is ’y(x t) = sup Py¢[v(‘)]. i.e. the best possible
v(-)ey
payoff we can achieve.

Amar Shah ( University of California, Berkele Optimal Control in Transition Path Theory October 8th 2022



Hamilton Jacobi Bellman Equation

We introduce the controlled SDE, with control v(x):
dX(s) = f(X(s), v(Xs))dt + o(Xs)dW(s) (t <s<T)
{X(t) =X
We have the expected payoff function:
Prtlv()] = ELf," r(X(s), v(X:))ds + g(X(T))]
The value function is y(x,t) = sup Py¢[v(-)], i.e. the best possible
payoff we can achieve. O

Stochastic-Hamilton-Jacobi-Bellman equation

Then our value function v solves this PDE:
ve(x, t) + %2Av(x, t) + m€a]>}<{f(x, v) - Viy(x, t) +r(x,a)} =0
V(x, T) = g(x)
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Solution

The optimal controller for the general SDE when o is invertible is
TVq

*
V' =00
q
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The optimal controller for the general SDE when o is invertible is
TVq

*
V' =00
q

Proof Sketch
@ Solve the maximization term to get v = —V¥
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The optimal controller for the general SDE when o is invertible is
TVq

*
V' =00
q

Proof Sketch
@ Solve the maximization term to get v = —V¥

@ Plug in for v to simplify our HJB to:

1 1
EGO'T :VVy+b-Vy— E(V’Y)TO'O'TV’Y =0
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The optimal controller for the general SDE when o is invertible is
TVq

*
V' =00
q

Proof Sketch
@ Solve the maximization term to get v = —V¥

@ Plug in for v to simplify our HJB to:
1 1
EGO'T :VVy+b-Vy— E(V’Y)TO'O'TV’Y =0

@ Show that this is satisifed by v = —log(q) using properties from
Transition Path Theory

Amar Shah ( University of California, Berkele Optimal Control in Transition Path Theory October 8th 2022 14 /21



Solution for full Langevin dynamics

Full Langevin is given by the equation:

dx = mlpdt
dp = —(VU +9p)dt + /2y~ mdw

Thus, 0 = \/2v8 'm <8 (I)> which is not invertible.

The optimal controller for the general SDE when o is (symmetric) and

invertible is v* = 275_1m¥ applied to the momentum part of the
equation.
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Overdamped Langevin dynamics with Mueller Potential

Uncontrolled trajectories

Controlled trajectories
—\
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Figure: 10 Uncontrolled and Controlled trajectories until T = 10
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Overdamped Langevin dynamics with Mueller Potential

Uncontrolled trajectories Controlled trajectories
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Figure: 10 Uncontrolled and Controlled trajectories until T = 10

This follows the overdamped equation

dx = (-VU(x) + %%)dtﬁL \/%dw. In the uncontrolled case, we have a

succes rate of 0 and in the controlled case we have a success rate of 0.932
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Duffing Oscillator for § = 10

Uncontrolled trajectories Controlled trajectories

Figure: 25 Uncontrolled and Controlled trajectories until T = 10 for § = 10

The Duffing Oscillator is essentially Full Langevin Dynamics in two
dimensions.

The uncontrolled process transitions with rate 0.313 and the controlled
process transitions with rate 0.917
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Results and Next Steps

© Proved an Optimal Controller result for a General SDE if the diffusion
matrix o is invertible

@ Proved an Optimal Controller result for Full Langevin dynamics,
where o is not invertible

© Applied these results to several numerical examples

19/21
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Results and Next Steps

© Proved an Optimal Controller result for a General SDE if the diffusion
matrix o is invertible

@ Proved an Optimal Controller result for Full Langevin dynamics,
where o is not invertible

© Applied these results to several numerical examples

Further Work

© Apply these results to more complicated systems including Full
Langevin Dynamics in multiple dimensions

@ Apply these ideas to similar problems, for example to calculate escape
rates.
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