
An Eager SMT Solver for Algebraic Data Type Queries
Amar Shah

University of California, Berkeley

1 Introduction and Motivation
Algebraic Data Types (ADTs) are a programming construct
classically found in functional programming languages but
are increasingly found in all kinds of modern languages.
ADTs are a convenient generalization of structures like enu-
merated types, lists, and binary trees.
A natural problem is the satisfiability of formulas over

the theory ADT. This has applications in modelling lan-
guages [Milner 1978], proof assistants [Gonthier 2005] and
program verification [Bjørner et al. 2013]. We propose an ea-
ger solver forADT satifiability modulo theory (SMT) queries
via a quantifier free reduction to Equality and Uninterpreted
Functions (EUF) SMT queries. This improves on existing
solvers [Hojjat and Rümmer 2017] [Kostyukov et al. 2021]
for ADT since it can be used in tandem with any SMT solver
that solves EUF queries and it can be easily used in a high
performance computing setting [Pimpalkhare et al. 2021].

2 Background
A theory is a set of sentences in a formal mathematical lan-
guage. A satifiability modulo theory (SMT) solver determines
if sentences are satisfiable with a background theory. For
example EUF is a theory with only symbolic constants, ap-
plications of functions, and basic logical connectives (like
∧,∨,¬). ADT is our theory of Algebraic Datatypes. See [Bar-
rett et al. 2017] for the full formal treatment of these theories.

Our solver takes a quantifier free formula𝜓 in ADT that
is in flat, NNF form, reducing to quantifier free in EUF and
then applying an SMT solver to get a Sat or Unsat result:

Definition 2.1. A theory 𝑇 reduces to a theory 𝑅 if
there is a computable𝑚 s.t. 𝑇 |= 𝜓 ↔ 𝑅 |=𝑚(𝜓)
A formula 𝜙 is flat if function symbols only occur
in equations of the form 𝑥 = 𝑓 (𝑥1, ..., 𝑥𝑛) where
𝑥, 𝑥1, ..., 𝑥𝑛 are variables.
A formula 𝜙 is in Negation Normal Form (NNF) if
the only Boolean operators are conjunction, disjunction,
and negation only applied to atomic formulas.

Note that any query can be reduced to a flat NNF form.
We will build our theory of ADT with functions called

constructors, selectors, and testers. Here is an example of
how we would define the list ADT:

1 (declare −datatype List ((Nil) (Cons (head Int) (←↪

tail List))))

The definition uses two constructors: Nil and Conswhich
are the two possible ways to build a List. Nil takes no inputs
and outputs a List. Cons is a function that takes an Int and
a List and outputs a List. Each corresponding constructor
has a set of selectors. Nil has no selectors, but Cons has
selectors given by Head and Tail. These can be thought of
ways to de-construct a list, i.e. get back to the terms that
we used to build a List. The definition implicitly defines
two testers: is_Nil and is_Cons. These functions are from
Lists to True or False and essentially tell you how a given
list was constructed.

Definition 2.2 (Algebraic Data Type). An instance
of an ADT A is a tuple consisting of:
• A set A𝑆 ⊆ S of sort symbols containing Bool
• A distinguished finite set of constructors A𝐶 ⊂
F , where each constructor has a sort 𝜎 and arity
𝑙 for a constructor 𝑓 : 𝜎1 × ... × 𝜎𝑙 → 𝜎

• A distinguished finite set of selectors A𝑆 ⊂ F ,
such that there are 𝑙 distinct selectors 𝑓 1, ..., 𝑓 𝑙

for each constructor 𝑓 ∈ A𝐶 with arity 𝑙 .
• A distinguished finite set of testersA𝑇 ⊂ F and

a bijection 𝑝 : A𝐶 → A𝑇 which sends 𝑓 ↦→ 𝑖𝑠𝑓

Additionally, we want the requirement that restricting
our ADT A to just the base terms and constructors is
well-sorted, i.e. there are no circular dependencies in
how we define each term.

3 Approach
The idea behind our reduction will be to encode the ax-
ioms of ADT in the language of EUF. We cannot do this
directly, since these axioms have universal quantifiers. Solv-
ing theories with universal quantifiers is expensive and is
not supported by many SMT solvers. Instead ,we will only
solve ADT queries on quantifier free formulas by reducing
them to EUF quantifier free formulas. We use a technique
called “blasting”: we will only instantiate our axioms over
terms that appear in the query.
For a formula𝜓 in ADT we will reduce this to𝜓 ∗ ∧ 𝜙1 ∧

... ∧ 𝜙𝑚 where {𝜙𝑖 } are additional axioms we must satisfy
and𝜓 ∗ in EUF is a modified version of𝜓 created by the rules:

A . 𝑓 (𝑡1 ...𝑡𝑙) = 𝑡 =⇒ 𝑓 (𝑡1, ...𝑡𝑙) = 𝑡 ∧ 𝑖𝑠𝑓 (𝑡) ∧
𝑙∧

𝑖=1
𝑓 𝑖 (𝑡) = 𝑡𝑖

B . 𝑓 𝑗 (𝑡) = 𝑡 𝑗 =⇒ 𝑓 𝑗 (𝑡) = 𝑡 𝑗∧∨
𝑔∈{ 𝑓1,...𝑓𝑛 }

[∃𝑡1, ..., 𝑡𝑙 [𝑔(𝑡1, ..., 𝑡𝑙) = 𝑡 ∧
𝑙∧
𝑗=1

𝑔 𝑗 (𝑡) = 𝑡 𝑗]]

Amar Shah

C . 𝑖𝑠𝑓 (𝑡) =⇒ ∃𝑡1, ..., 𝑡𝑙 [𝑓 (𝑡1, ..., 𝑡𝑙) = 𝑡 ∧
𝑙∧
𝑗=1

𝑓 𝑗 (𝑡) = 𝑡 𝑗]

These rules ensure that constructors, testers, and selectors
all behave well with one another. To create our axioms 𝜙1, ...
𝜙𝑚 , we blast over the set 𝑇 which is the set of all variables
that appear in our query. For 𝑡 ∈ 𝑇 we want:

1. For any tester in {𝑖𝑠𝑓𝑖 }1≤𝑖≤ |𝐶𝜎 | , we add the axiom 𝜙 :=
|𝐶𝜎 |∨
𝑖=1
[𝑖𝑠𝑓𝑖 (𝑡) ∧

|𝐶𝜎 |∧
𝑗=1, 𝑗≠𝑖

¬𝑖𝑠𝑓𝑗 (𝑡)]

This axiom ensures that each variable satisfies exactly one
tester. This reduction is almost correct, except we need to
ensure the “well-sortedness” property of ADT. In Section
(4), we define the correct set 𝑇 so that we are considering all
possible cyclic relationships between terms.

4 Reduction
We can take an example query over lists:

1 (and (= (tail y) x) (= (tail x) y))

Clearly this is unsatisfiable since no well-sorted structure
could have x and y as tails of each other. This can in fact be
generalized to even more variables. Thus, we need an axiom
to encode this property into our reduction.

Let 𝑘 be the number of variables that appear in the input
query. Define𝑇0 = {𝑡 : 𝑡 is a term in𝜓 } and for 𝑖 = 0, ..., 𝑘−1,
define 𝑇𝑖+1 = {𝑠 |𝑡 ∈ 𝑇𝑖 and exists a selector 𝑓 𝑗 s.t. 𝑖𝑠𝑓 (𝑡) ∧
𝑓 𝑗 (𝑡) = 𝑠}. Then we define 𝑇 =

⋃𝑘
𝑖=0𝑇𝑖 . Now we can in-

troduce a second axiom that encodes this well-sortedness
constraint into our reduction:

2. For each 𝑡, 𝑠 ∈ 𝑇 where we know that 𝑠 is a subterm
of 𝑡 , we add the axiom 𝑠 ≠ 𝑡

Theorem 4.1. Say 𝜓 is an ADT-formula that is in
flat NNF form. If we define 𝑇 as above, then ADT |=
𝜓 ↔ EUF |= 𝜓 ∗ ∧ 𝜙1 ∧ ... ∧ 𝜙𝑚 where we compute𝜓 ∗

from𝜓 using Rules A, B, C and 𝜙1, ...𝜙𝑚 using Axioms
1 and 2. This is a reduction as in Definition (2.1)

Proof. →: If the ADT |= 𝜓 , then EUF |= 𝜓 ∗ ∧ 𝜙1 ∧ ... ∧ 𝜙𝑚
since we only introduce constraints with the axioms of ADT
←: Since EUF |= 𝜓 ∗, for every variable 𝑥 in𝜓 , it must be

that there is exactly one tester 𝑖𝑠𝑓 such that 𝜓 ∗ → 𝑖𝑠𝑓 (𝑥).
by Axiom (1) and one constructor 𝑓 such that 𝑥 is in the
codomain of 𝑓 by Rule (C).
Then we can apply each selector 𝑓 1, ..., 𝑓 𝑙 to get 𝑙 total sub-

terms. We keep applying selectors to each of these subterms
until we have considered all subterms up to depth 𝑘 . We may
reach subterms that appear in our input query𝜓 . However,
by Axiom 2 of our reduction, we know that in EUF, these
subterms cannot be equal to our original term.
Note that it does not really matter what these subterms

of depth more than 𝑘 are, since our original query𝜓 cannot

say anything about relations of depth more than 𝑘(since it is
a flat, NNF formula). Thus, we can let deeper subterms of 𝑥
be constants.
We do the same for all other variables in𝜓 and we have

created a satisfying assignement for𝜓 in ADT □

5 Evaluation & Future Work
We have a Python implementation of this reduction for flat
NNF for List with Int (and Real for mc2) in less than 200
lines of code. We fuzzed random inputs and tested this re-
duction on common edge cases to verify correction. To test
runtime we ran four popular SMT solvers z3 [de Moura and
Bjørner 2008], Princess [Rümmer 2008], CVC4 [Barrett et al.
2011], and mc2 [de Moura and Jovanović 2013] on 10,000
randomly generated queries on a M1 8-core Mac with 8 GB
of RAM:

Runtime of our Reduction on Z3, Princess,a nd CVC4
(Vars, Asserts) (2, 4) (4, 4) (4, 8)

SAT 2141 526 3154
UNSAT 7859 9474 6846

Z3 Prereduction (sec) 363.67 353.01 356.36
Z3 Post Reduction (sec) 368.20 359.85 365.89

Princess Pre-Reduction (sec) 2777.6 2700.6 2771.8
Princess Post-Reduction (sec) 3689.9 4000.4 4141.4
CVC4 Pre-Reduction (sec) 219.42 218.80 215.97
CVC4 Post-Reduction (sec) 240.97 288.43 288.00
mc2 Post-Reduction (sec) 189.54 234.27 202.37

We do worse on the three solvers with built-in ADT solv-
ing using our reduction. However, the strength of our ap-
proach comes from the fact that once we do the reduction
any SMT solver with support of EUF can solve the query.
Indeed, mc2 (the one solver without support for ADT) is
the fastest on 2 of the 3 tests. We expect that with certain
optimizations and used in a high performance computing
setting, we can get an even faster solver.

6 Acknowledgments
Thank you to Federico Mora and Sanjit A. Seshia for present-
ing me with this problem and mentoring me.

An Eager SMT Solver for Algebraic Data TypeQueries

References
Clark Barrett, Pacal Fontaine, and Cesare Tineli. 2017. The SMT-LIB Stan-

dard Version 2.6. https://smtlib.cs.uiowa.edu/papers/smt-lib-reference-
v2.6-r2017-07-18.pdf.

Clark W. Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean,
Dejan Jovanovic, Tim King, Andrew Reynolds, and Cesare Tinelli. 2011.
CVC4. In Computer Aided Verification - 23rd International Conference,
CAV 2011, Snowbird, UT, USA, July 14-20, 2011. Proceedings (Lecture Notes
in Computer Science, Vol. 6806), Ganesh Gopalakrishnan and Shaz Qadeer
(Eds.). Springer, 171–177. https://doi.org/10.1007/978-3-642-22110-1_14

Nikolaj S. Bjørner, Kenneth L. McMillan, and Andrey Rybalchenko. 2013.
Higher-order Program Verification as Satisfiability Modulo Theories
with Algebraic Data-types. CoRR abs/1306.5264 (2013). arXiv:1306.5264
http://arxiv.org/abs/1306.5264

Leonardo de Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT Solver.
In Tools and Algorithms for the Construction and Analysis of Systems,
C. R. Ramakrishnan and Jakob Rehof (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 337–340.

Leonardo de Moura and Dejan Jovanović. 2013. A Model-Constructing
Satisfiability Calculus. In Verification, Model Checking, and Abstract In-
terpretation, Roberto Giacobazzi, Josh Berdine, and Isabella Mastroeni

(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 1–12.
Georges Gonthier. 2005. A computer-checked proof of the Four Colour

Theorem.
Hossein Hojjat and Phillipi Rümmer. 2017. Deciding and Interpolating

Algebraic Datatypes by Reduction. (2017). https://ieeexplore.ieee.org/
document/8531279

Yuri Kostyukov, DmitryMordvinov, and Grigory Fedyukovich. 2021. Beyond
the elementary representations of program invariants over algebraic
data types. (2021). https://dl.acm.org/doi/10.1145/3453483.3454055

Robin Milner. 1978. A theory of type polymorphism in programming. J.
Comput. System Sci. 17, 3 (1978), 348–375. https://doi.org/10.1016/0022-
0000(78)90014-4

Nikhil Pimpalkhare, Federico Mora, Elizabeth Polgreen, and Sanjit A. Se-
shia. 2021. MedleySolver: Online SMT Algorithm Selection. In Theory
and Applications of Satisfiability Testing - SAT 2021 - 24th International
Conference, Barcelona, Spain, July 5-9, 2021, Proceedings (Lecture Notes
in Computer Science, Vol. 12831), Chu-Min Li and Felip Manyà (Eds.).
Springer, 453–470. https://doi.org/10.1007/978-3-030-80223-3_31

Philipp Rümmer. 2008. A Constraint Sequent Calculus for First-Order
Logic with Linear Integer Arithmetic. In Proceedings, 15th International
Conference on Logic for Programming, Artificial Intelligence and Reasoning
(LNCS, Vol. 5330). Springer, 274–289.

https://smtlib.cs.uiowa.edu/papers/smt-lib-reference-v2.6-r2017-07-18.pdf
https://smtlib.cs.uiowa.edu/papers/smt-lib-reference-v2.6-r2017-07-18.pdf
https://doi.org/10.1007/978-3-642-22110-1_14
https://arxiv.org/abs/1306.5264
http://arxiv.org/abs/1306.5264
https://ieeexplore.ieee.org/document/8531279
https://ieeexplore.ieee.org/document/8531279
https://dl.acm.org/doi/10.1145/3453483.3454055
https://doi.org/10.1016/0022-0000(78)90014-4
https://doi.org/10.1016/0022-0000(78)90014-4
https://doi.org/10.1007/978-3-030-80223-3_31

	1 Introduction and Motivation
	2 Background
	3 Approach
	4 Reduction
	5 Evaluation & Future Work
	6 Acknowledgments
	References

